
Real-Time Linux lets you custom design your
hard real-time control applications

Dr. Peter Wurmsdobler
Open Control Lab Director

Control.com

Hopkinton, MA

L inux has become a powerful operating
system (OS) challenging the computer

systems market because it is open source and
adaptable to different hardware and computing
problems. Today there are some hard real-time
implementations of the Linux kernel available
on the Internet; they are mature and suitable for
control/automation systems. With these imple-
mentations and some industrial applications al-
ready in existence, now is the time to try real-
time Linux in controls.

Although an automation system is usually
based on a hard real-time OS, a control engineer
typically focuses on design issues. The resulting
control concept is commonly implemented on
proprietary target hardware using some propri-
etary software and tools, too. Doing so simpli-
fies the implementation and integration, but
conceals internal functioning and decreases
adaptability to specific customer problems.

Most proprietary solutions lack transparen-
cy and openness. Because real-time Linux is
open source, you are free to look at the code, dis-
cover how it works, fix bugs and adapt it to your
needs. You are free to add a different scheduler
policy, ring buffers in shared memory, or any oth-
er communication scheme. In addition, the com-
munity will be happy to accept your proposals
and to adopt them as input to standards. At this
time the application programming interface is re-
liable enough to build applications upon it.

Linux vs real-time Linux
Linux is an OS for a general-purpose com-

puter optimized for maximum throughput and
average performance of each process. Its ker-
nel is not appropriate for hard real-time use for
several reasons. For example:
• It uses coarse-grained synchronization.
• It cannot be preempted.
• It will disable interrupts sometimes for long
periods, especially in device drivers.

How do you make Linux a real-time OS?
The most natural strategy would be to add real-
time capabilities by modifying the kernel. One
common method is to insert preemption points

into the kernel wherever it’s safe to perform a
context switch—after which the kernel checks
whether a high-priority process can be run.
There are plenty of such implementations, but
the result is only soft real-time performance,
which isn’t really appropriate for control.

A second and more promising approach is
to split the kernel into two parts, one part that
runs as a general purpose OS with no hard real-
time capabilities, and a second part with real-
time capabilities, but running the first part as
simple task. This method is often used, for ex-
ample, to add real-time capabilities to the
Microsoft® Windows™ OSs. As for the Linux
kernel, there are two principal implementations
of this approach, both based on the NMT ver-
sion of real-time Linux:
• RTLinux developed by FSMLabs; and
• RTAI developed by the Dipartimento di
Ingegneria Aerospaziale, in Italy.

The core idea behind these hard real-time
Linux implementations, which I’ll refer to sim-
ply as real-time Linux, is to run a full-featured
OS as one thread of a real-time executive. In a
logical sense, tasks and interrupts are separated
into two classes, the real-time ones running di-
rectly on behalf of the executive, and the non-
real-time ones executed within the common
OS, with some means of communication be-
tween these two priority spaces.

As a kernel patch, the modifications to the
kernel put a thin layer underneath the Linux OS.
This core hard real-time mechanism takes over
control of the low-level interrupt handling from
Linux. The low-latency interrupt handlers can-
not be preempted by Linux, which acts only on
emulated interrupts. Thus, the hard real-time
layer constitutes a single process per CPU run-
ning on the bare computer hardware, with Linux
being just a low-priority thread among real-time
threads and interrupt service routines. Linux, as
a task, works as usual in its own process space.

Why use real-time Linux in control? Real-
time Linux is appropriate for control because
the only—but most important—resource man-
aged by the real-time executive in a very deter-

CONTROL SOFTWARE FORUM

APRIL 2001 CONTROL SOLUTIONS 91www.controlsolutionsmag.com

CONTROL SOFTWARE FORUM

ministic manner is timing.
Many features necessary for complex con-

trol applications are already implemented as
kernel modules. For example:
• Unconditional interrupt interception and ad-
vanced interrupt control functions,
• High-resolution (in ns) timing functions,
• Independent scheduling instance controlling
the real-time threads,
• FIFOs between the real-time and the non-real-
time part of the entire OS,

• Shared memory allowing real-time/nonreal-
time threads to share data,
• Signals synchronized between real-time and
non-real-time threads,
• Synchronization primitives (mutex, sema-
phores, condvars).

Offering a reliable concept is sometimes not
enough for a single user or a control systems
programmer. Good documentation is needed as
well as debugging tools and support. Since real-
time Linux is a product of the Internet, the entire
community is available to supply support. Var-
ious Internet sites and companies have been es-
tablished to offer professional services—e.g., the
Real Time Linux Foundation (www.realtime
linuxfoundation.org) and Rick Lehrbaum’s
LinuxDevices.com (now part of ZD Net).

Because real-time Linux is a kernel patch, it
follows the rapid development of the Linux ker-
nel, which is ported to nearly all CPU platforms.
It is available for i386 processors, PPC and
AlphaAXP, and many other ports are underway.
Similarly, drivers are available from users and
hardware suppliers, or from the Linux Control
and Measurement Interface (http://stm.lbl.gov/
comedi/) for data acquisition boards.

Industrial real-time Linux applications
Real-time Linux evolved with the applica-

tions for which it was used, and vice versa. An
example is FlightLinux, a concept that uses a
real-time Linux for on-board spacecraft use. It is
the subject of a NASA Advanced Information
System Technology (AIST) research effort
(http://aqua.qssmeds.com/flightLinux/). Another
flight-related control application is the Level C
Flight Simulator, which controls a Dassault
Falcon 10 simulator with six-degree motion.

Another interesting ongoing project is the
adaptation of MiniRTL, real-time Linux on a flop-
py disk, for high-end T1 modems made by the
Austrian company Datentechnik AG. Emco, an-
other Austrian company, is implementing real-
time Linux for CNC machine control. (For more
information on this project, e-mail wagnery@
emco.co.at.) In the machine control arena, the
Oregon Cutting Division of Blount Inc. is devel-
oping a control system for 60 in-house chain as-
sembly machines running 24x7 at a control peri-
od of 500 µs using RTLinux from FSMLabs. In a
similar way, Lang GmbH & Co. KG in Germany
uses RTLinux to control up to six stepper motors
for an engraving and milling machine.

Other RTLinux examples include:
• Apower control project, controlling a 60-MW
power supply at the Institute for Plasma
Research, STT Operations and Control Group in
India (contact ranjan@ipr.res.in for more info).
• A test bench for automobiles processing
recorded road data through a 4512 point FIR fil-
ter to control hydraulic cylinders (Tracos
Prüfsysteme in Germany, www.tracos.de)

Real-time Linux is ready now
The hard real-time modification of the

Linux kernel offers a very flexible and powerful
means to implement control and automation sys-
tems. The maturity of these implementations,
running industrial examples, and the support of
the Internet community and professional service
providers will encourage its intense use in con-
trol systems over the coming years.

About the author
Peter Wurmsdobler (peterw@thinkingn-

erds.com) is research assistant at the Institute for
Machine and Process Automation in Austria, and
responsible for the development of real-time mea-
surement systems at the Centre de Transfert des
Microtechniques in France. In August he joins
control.com as open control lab director. He is ini-
tiator and co-organizer of the annual real-time
Linux workshops and cofounded the real-time
Linux foundation in January 2001. Wurmsdobler
received his master in mechanical engineering
and a PhD in control engineering from the Vienna
University of Technology, Austria.

92 CONTROL SOLUTIONS APRIL 2001 www.controlsolutionsmag.com

